1. Does not solve problem of argument from ignorance, but merely still based on "equal a priori" prob.

2. Reason for this is subtle, based on assuming "equality" for all discrete states. Difficulty shows clearly
When go continuous, reflection shows that proper general def of info or entropy is relative relative to some given (apriori if you will) weighting or measure. (in general given by the net limit of \(\Sigma i p_i \ln \frac{p_i}{\alpha_i} \) which always exists). Point is, this leaves discrete case \(\Sigma i p_i \ln \frac{p_i}{\alpha_i} \) where \(\alpha_i \) arbitrary > 0.
When this is realized, your general prescription collapses since you still haven't solved the basic problem of the proper measure. Your choice $\Omega = \Omega^0$ simply is concession of equality of all discrete states — equivalent to an equal a priori probability assumption.

To be completely concrete, I present an example where your prescription is obviously false.
Example:

Stock Process

\[
\begin{pmatrix}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\]

\[
\begin{align*}
\frac{1}{3}x_1 + \frac{1}{3}x_2 &= x_1 \\
\frac{2}{3}x_1 + \frac{2}{3}x_2 &= x_2
\end{align*}
\]

\[
\frac{1}{3}x_2 = \frac{2}{3}x_1 \\
x_2 = 2x_1
\]

\[
\begin{align*}
x_1 &= \frac{1}{3} \\
x_2 &= \frac{2}{3}
\end{align*}
\]

Stationary value:

\[
\begin{align*}
\rho^* &= \frac{1}{3} \\
\rho_2^* &= \frac{2}{3}
\end{align*}
\]

General Problem: Starting with \(p, \rho \) do \(n \) steps later.

Then

more gen
General question given prior prob. \(P_i \).

Then given some statistics such as \(\theta \) \(\exp f(x_i) \), what is most likely distrrib?