I have received copy from Prof. Whelen of your letter concerning my paper 'on the Foudi'.

I find your analysis quite correct and very well expressed on most essential points ... so well that I would like your permission to send copies of parts of your letter to others with whom I am corresponding.

Parallel you draw with relativity is very clear and striking -- indeed I was not unaware of this.

Give good discussion of nature of physical theory ... once position -- modeling -- motivation for complete unifying theory -- discussion of 'reality'.

To core point: Both on on unifying difficulty -- so what? -- confirmities -- for example -- why allow prejudices to govern choice of theory? Anyhow, I am not convinced that this is only possible ... merely seems to me simple, most complete, elegant way out of present affair. No prejudice determination -- still need theory OK. Bohr, Weyl, etc. Holden variable. Tanie OK, but seem too clumsy.
Discussion of non-observability is in
Discussion of nature of physical theory. Refer
to criticism on page 9 of letter.

Highly
Annoyed by

Froebstated: "The trajectory of the memory
configuration of a real physical observer, on the
other hand, does not branch. I can testify
to this from personal introspection, as can you."

Come now! In the first place the theory
itself says that no observer will be aware of any
branching process -- furthermore when branching has
taken place each separate branch is independent
of the others in the following sense: since each
is an element of a superposition, each separately
obeys the same wave equation in exactly the same
manner (its future time evolution in the sense) whether
or not any other branches (elements) are present.
you can say "Is the real physical world we must be content with just one bread. Everel's world and the real physical world are therefore not isomorphic." I can't help being reminded of the criticism of Copernicus. They said that the mobility of the earth as a real physical fact is incompatible with the common sense interpretation of nature. 

i.e., as my foot completely fell, we do not experience that there is any motion of the earth. So it contradicts.

However, the theory of the motion of the earth is not so difficult to swallow once it is complete enough that one can also deduce that no motion will be felt by the earth's inhabitants. Similarly with my theory one is able to deduce that no observer will ever be able to detect any such splitting effect as is implied by the formal theory. Therefore it is not in contradiction with sense experience at all, and one must accept or reject it on other grounds.
Re your worry about probability: I regard it, in any other theory as a mathematical model (namely a branch of set theory), to whose explicit substantiation and application in today's world is judged solely by its success.

In short, I do not call the whole branching process as the "lost contradiction" that you do. The thing is in complete accord with our everyday experience (at least so far as my other interpretation of TM).

It is in complete accord only because it is possible to show that no observer would ever beware of "branching", which is alien to our experience, as you point out.

This whole point of the transition from the possible to the actual is taken care of in my theory in a very simple way ---
There is no such transition, nor is any such transition necessary for the theory to be in full accord with our experiences. From the viewpoint of the theory, all elements of a superposition are "actual," none any more "real" than another. It is completely unnecessary to suppose that after an observation somehow one element of the final superposition is selected to be awarded with a mysterious quality called "reality," and the others condemned to oblivion. It would be more charitable and allow the others to coexist--they won't interfere anyway, since all elements (branches) individually obey the wave equation, with complete indifference to the presence or absence (actual or non-actual) of any other elements.

This is only to say that the theory manages to avoid the difficulty of the transition, from the possible to the actual--and I consider this a great strength of the theory. It is isomorphic with our experience, and nothing more can be asked of it, without exposing any philosophic prejudice.
Now I am not so naive as to hold that this theory is the only possible acceptable interpretation of Quantum mechanics. I do believe that any number of theories can be constructed which will adequately correspond to our experiences, so that the selection among them must be largely a matter of taste. I do believe, however, that my theory is at the present time the simplest conceptually adequate interpretation. The hidden variable theories are simply more cumbersome and more artificial, and the Copenhagen interpretation is hopelessly incomplete because of apriori reliance on classical physics (excluding in principle any deduction of classical physics from quantum theory, or any serious investigation of measuring processes), as well as a philosophic monstrosity with its 'reality concept' for the macroscopic world and no counterpart for the microcosm.
Finally I would like to point out that from my point of view there can be no preference for deterministic or indeterministic theories. That my theory is fundamentally deterministic is not due to any deep conviction on my part that determinism holds any sacred position. It is quite conceivable that an adequate stochastic interpretation of quantum mechanics could be developed (perhaps along the lines of Popper's theories), where the fundamental processes of nature are pictured as stochastic processes whether or not they are undergoing observation. I only object to mixed systems where the character changes with mystical "acts of observation."